

Prevalence and Risk Factors of Sarcopenia in Residential Aged Care

Dr Tim Henwood

Co-Authors:

Dr Hugh Senior, A/Prof Justin Keogh,

Elaine Beller and Dr David Scott

THE UNIVERSITY OF QUEENSLAND

Ageing and Muscle

Sarcopenia

 European Working Group on Sarcopenia in Older People suggested conceptual staging for clinical diagnosis that would capture other important agerelated muscle changes

Stage	Muscle mass	Muscle Strength	Performance
Pre-Sarcopenia	\downarrow		
Sarcopenia	\downarrow	↓ O	R ↓
Severe Sarcopenia	\downarrow	\downarrow	\downarrow

• Cruz-Jentoft et al. Age and Ageing 2010, 39, 412-423.

Aims

Identify the prevalence of sarcopenia in residential aged care facilities in Australia with a specific interest in sarcopenic status and the risk factors to being sarcopenic.

Methods

Design

- Cross-sectional
- Recruitment
- 11 Residential aged care facilities
- 709 residents, 381 eligible and 273 randomised to study
 - Inclusion: ≥ 65yrs, permanent resident of RACF, Informed Consent, Proxy consent if indicated
 - Exclusion: (i) pacemaker fitted, (ii) end-stage palliative or terminal, (iii) behavioural problems (iv) other
- Ineligible (N = 328)
 - 3% pacemaker,
 - 8% were end-stage palliative or terminal,
 - 31% had dangerous behaviours, and
 - 58% had medical or other conditions/problems
- 102 Participants

Assessment

OUTCOME MEASURE	TOOL
Demographics	
Health Status	Medical Records
BMI	Height (stadiometer), Weight (calibrated scales)
Muscle Mass	Bioelectrical Impedance Assessment
Physical Performance (Gait Speed)	2.4m walk test (the Short Physical Performance Battery)
Muscle Strength	Handgrip Strength (dynamometer)
Balance	Standing Balance test (SPPB)
Balance Confidence	Activity Specific Balance Confidence (ABC)
Lower Limb Strength	Repeated chair rise (SPPB)
Cognition	Mini-Mental State Examination (MMSE)
Mood	Geriatric Depression Scale (GDS-SF)
Physical Activity Levels	International Physical Activity Questionnaire (IPAQ)
Nutrition	Mini-Nutritional Assessment Instrument (MNA-SF)
Sedentary Behaviour	IPAQ, ActivPAL

- Age 84.5 ± 8.2 years
- $BMI 27.3 \pm 5.7 \text{ Kg/m}^2$
- SPPB Summary score 3.5 +/- 2.4
- Time in RAC 39.8 ± 40.3 months, Range 2 and 237 months
- Falls in previous 6 months -N = 27
- 39% had mild cognitive impairment (MMSE) a
- 51% were classified normal on the GDS

Results

MNA Nutritional Status (n, %)

Malnourished	At risk of malnutrition	Normal	Total
15 (15%)	49 (49%)	37 (37%)	101

IPAQ Mean (s.d.), MET-mins/wk

Component	Males	Females	Total Sample
Walking	248 (752.8)	275 (609.4)	266 (654.3)
Moderate	41 (123.8)	132 (293.6)	103 (255.3)
Vigorous	0	0	0
Total IPAQ	289 (765.1)	407 (715.8)	370 (729.9)
Sitting time (hrs/day)	13.3 (2.3)	12.7 (3.3)	12.9 (3.0)

ActivPAL (n=41)

During Wake Hours	Sitting/Lying (hr)	Standing (hr)	Stepping (mins)
Med (IQR)	12.4 (1.7)	1.9 (1.3)	21.4 (36.7)

Sarcopenic Status

Older People Without Sarcopenia

Normal Muscle Mass (n=62, 61%)

- 60 (97%) low physical performance
- 50 (81%) low muscle strength.
- 49 (79%) both low muscle strength and low physical performance
- 11 (18%) low physical performance, but normal muscle strength
- 1 (2%) low strength, but normal physical performance
- 1 participant has normal strength and normal physical performance

Prediction of Sarcopenic Status THE UNIVERSITY OF QUEENSLAND (logistic regression analysis)

Univariable analysis – statistically significant factors at 10% level

Factor	Odds ratio (95% Cl)	P-value
BMI	0.86 (0.78 – 0.94)	0.001
Total SPPB	0.82 (0.69 – 1.00)	0.05
Standardised sitting (ActivPAL)	1.90 (0.90 – 4.03)	0.09
IPAQ sitting time	1.18 (1.00 – 1.40)	0.05
Nutritional status	0.19 (0.05 - 0.68)	0.01

Multivariable analysis – statistically significant factors at 5% level

Factor	Odds ratio (95% Cl)	P-value
BMI	0.86 (0.78 – 0.94)	0.001

Other RACF sarcopenia studies, high risk assoc with male gender, cerebrovascular disease, osteoarthritis; low risk with BMI >21kg/m², leisure physical activity (Landi et al. 2012)

J Cachexia Sarcopenia Muscle DOI 10.1007/s13539-014-0144-z

ORIGINAL ARTICLE

Assessing sarcopenic prevalence and risk factors in residential aged care: methodology and feasibility

Timothy R. Henwood • Justin W. Keogh • Natasha Reid • Will Jordan • Hugh E. Senior

Received: 15 August 2013 / Accepted: 26 March 2014 © Springer-Verlag Berlin Heidelberg 2014 Int. J. Environ. Res. Public Health 2013, 10, 6783-6798; doi:10.3390/ijerph10126783

OPEN ACCESS

International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph

Article

Objectively Measured Activity Patterns among Adults in Residential Aged Care

Natasha Reid ^{1,*}, Elizabeth Eakin ¹, Timothy Henwood ², Justin W. L. Keogh ^{3,4,5}, Hugh E. Senior ⁶, Paul A. Gardiner ^{7,8}, Elisabeth Winkler ¹ and Genevieve N. Healy ^{1,9,10}

Conclusion

- Older people living in residential aged care facilities experience high prevalence of sarcopenia at 39%
- Older people living in RACFS who did not have sarcopenia also displayed a high level of low muscle strength and/or physical performance

 Older people living in RACF with a higher BMI had a lower risk of sarcopenia

Resistance Training

 Resistance training is unequivocally the most effective method of reversing age-related declines in muscle mass and strength

MRI taken at the mid-thigh of a 92yo man before and after a 12 week resistance training program. Muscle mass and strength increased by 150 and over 200% respectively

Pre-Training

Post-Training

Harridge et al. Muscle Nerve 1999; 22: 831-9